Gaming

Antimatter Dimensions Tickspeed Challenge

Welcome to our Antimatter Dimensions Tickspeed Challenge information. The Gotcha of Challenge 9 requires guide shopping for of dimensions in a non-intuitive order. We wrote a python script to map out a listing of which dimensions to purchase, and what number of of them to purchase, in what order. This information is that output and directions on find out how to learn it.

Antimatter Dimensions Tickspeed Challenge

Welcome to our Antimatter Dimensions Tickspeed Challenge information. The Gotcha of Challenge 9 requires guide shopping for of dimensions in a non-intuitive order. We wrote a python script to map out a listing of which dimensions to purchase, and what number of of them to purchase, in what order. This information is that output and directions on find out how to learn it. We know that there are individuals who have a tough time ending the Antimatter Dimensions recreation. If you might be a type of who discover it tough to complete the sport, let’s take you to our Antimatter Dimensions information.

How to Read the Buy List

This information is constructed to be used in scientific show mode:

Each line is a collection of purchases on the finish of which you must examine the bottom remaining worth for any of the 8 dimensions and however tickspeed upgrades as much as one quantity decrease than that new lowest.

This checklist will not be good, it’s going to nonetheless trigger some costs to leap, some as a result of it seams unavoidable, some as a result of I wasn’t cautious sufficient. however this checklist is *adequate*.

The first line reads “[[5, 17], [3, 9], [1, 4]]” translated to:
‘buy dimension 5, until you have 9 dimension 5’s costing 1e17 (don’t purchase the tenth which might improve the worth).
Then ‘buy dimension 3, until you have 9 dimension 3’s costing 1e9 (don’t purchase the tenth which might improve the worth).
Then ‘buy dimension 1, until you have 9 dimension 1’s costing 1e4 (don’t purchase the tenth which might improve the worth).
Finally ‘buy ticker upgrades until doing so would force a dimension price conflict’ (not for line 1 that is ‘do nothing’ as a result of the smallest ticker improve is e3, which is one beneath e4 which is at the moment exhibiting for dimension 1.)

This could be unattainable since dimension 5 is locked till you’ve bought dimensions 1,2,3,and 4. So Implicit within the directions is ‘buy up to 9 of each dimension when you have the funds.

Also note line 4 and 5 which read

[[6, 23], [1, 13], [2, 10]]
[[3, 19], [2, 14], [1, 10]]

Where on line 4 you buy dimension 1 until you have 9 of price 1e13, but then on line 5 you have buy dimension 1 until you have price 1e10…. Ya… I was too lazy remove all redundant calls (I did remove redundant calls to buy for single purchase lines, there were a lot of them). Just ignore the instruction

Note at the end of instruction set 3″ [1, 7]” is when you will first buy ticker upgrades to e4. The ticker upgrade will show e5 to buy, but you can’t however that one but, as it could then present e6, and be in battle with dimension 2 which nonetheless has a worth of e6.

The Buy List – Antimatter Dimensions Tickspeed Challenge

My unique code derived model is beneath, however Juni improved it (I presume, I didn’t take a look at the brand new model. it’s most likely higher my model was solely adequate to get me to cross the problem then I ended fixing it). The first purchase checklist is theirs.

  • [5, 17], [3, 9], [1, 4]]
  • [[4, 12], [2, 6]]
  • [1, 7]
  • [[6, 23], [1, 13], [2, 10]]
  • [[3, 19]]
  • [[7, 30], [8, 39], [4, 24], [2, 18]]
  • [[6, 43], [5, 33], [1, 16], [2, 22]]
  • [[7, 42], [2, 34], [4, 30], [3, 24], [1, 22]]
  • [[5, 41]]
  • [3, 29]
  • [[4, 36]]
  • [1, 31]
  • [[2, 38], [1, 37], [3, 34]]
  • [[7, 66], [4, 60], [2, 58], [8, 54], [3, 39]]
  • [[8, 69], [3, 59], [5, 57], [1, 40]]
  • [[6, 53], [1, 55]]
  • [6, 63]
  • [[2, 62], [1, 58]]
  • [5, 65]
  • [[1, 67], [3, 64]]
  • [[7, 78], [6, 83], [5, 81], [1, 73], [2, 70], [4, 66]]
  • [[7, 102], [2, 94], [4, 90], [8, 84], [3, 69]]
  • [[1, 76]]
  • [[3, 79]
  • [8, 99]]
  • [[3, 84], [1, 82]]
  • [[2, 98], [1, 97], [3, 94], [5, 89]]
  • [6, 93]
  • [[1, 100], [5, 97]]
  • [[4, 96]]
  • [[7, 126], [4, 120], [2, 118], [8, 114], [3, 99]]
  • [[1, 106], [6, 103]]
  • [[5, 137], [8, 129], [3, 119], [1, 109]]
  • [[6, 113]]
  • [[1, 112]]
  • [[6, 123]]
  • [1, 115]
  • [[2, 122], [1, 118]]
  • [[7, 162], [2, 154], [4, 150], [8, 159], [3, 134], [1, 127]]
  • [[6, 143], [1, 136]]
  • [[3, 139]]
  • [[6, 163], [5, 153]]
  • [[3, 144]]
  • [[1, 148]]
  • [[5, 161]]
  • [3, 149]
  • [[4, 156]]
  • [1, 151]
  • [[2, 158], [1, 157], [3, 154]]
  • [[7, 186], [4, 180], [2, 178], [8, 174], [3, 159]]
  • [[8, 189], [3, 179], [5, 177], [1, 160]]
  • [[6, 173], [1, 172]]
  • [1, 175]
  • [6, 183]
  • [[2, 182], [1, 178]]
  • [5, 185]
  • [1, 187], [[3, 184]]
  • [[7, 198], [6, 203], [5, 201], [1, 193], [2, 190], [4, 186]]
  • [[7, 222], [2, 214], [4, 210], [8, 204], [3, 189]]
  • [[1, 196]]
  • [[3, 199]]
  • [[8, 219]]
  • [[3, 204], [1, 199]]
  • [[1, 202]]
  • [[2, 218], [1, 217], [3, 214], [5, 209]]
  • [6, 213]
  • [[1, 220], [5, 217]]
  • [[4, 216]]
  • [[7, 246], [4, 240], [2, 238], [8, 234], [3, 219]]
  • [1, 226], [6, 223]]
  • [[5, 257], [8, 249], [3, 239], [1, 229]]
  • [[6, 233]]
  • [[1, 232]]
  • [[6, 243]]
  • [1, 235]
  • [[2, 242], [1, 238]]
  • [[7, 282], [2, 274], [4, 270], [8, 264], [3, 254], [1, 247]]
  • [[6, 263], [1, 256]]
  • [[3, 259]]
  • [[6, 283], [5, 273], [1, 265]]
  • [[8, 279], [3, 264]]

Juni’s Version

  • [5, 17], [3, 9], [1, 4]]
  • [[4, 12], [2, 6]]
  • [1, 7]
  • [[6, 23], [1, 13], [2, 10]]
  • [[3, 19]]
  • [[7, 30], [8, 39], [4, 24], [2, 18]]
  • [[6, 43], [5, 33], [1, 16], [2, 22]]
  • [[7, 42], [2, 34], [4, 30], [3, 24], [1, 22]]
  • [[5, 41]]
  • [3, 29]
  • [[4, 36]]
  • [1, 31]
  • [[2, 38], [1, 37], [3, 34]]
  • [[7, 66], [4, 60], [2, 58], [8, 54], [3, 39]]
  • [[8, 69], [3, 59], [5, 57], [1, 40]]
  • [[6, 53], [1, 55]]
  • [6, 63]
  • [[2, 62], [1, 58]]
  • [5, 65]
  • [[1, 67], [3, 64]]
  • [[7, 78], [6, 83], [5, 81], [1, 73], [2, 70], [4, 66]]
  • [[7, 102], [2, 94], [4, 90], [8, 84], [3, 69]]
  • [[1, 76]]
  • [[3, 79]
  • [8, 99]]
  • [[3, 84], [1, 82]]
  • [[2, 98], [1, 97], [3, 94], [5, 89]]
  • [6, 93]
  • [[1, 100], [5, 97]]
  • [[4, 96]]
  • [[7, 126], [4, 120], [2, 118], [8, 114], [3, 99]]
  • [[1, 106], [6, 103]]
  • [[5, 137], [8, 129], [3, 119], [1, 109]]
  • [[6, 113]]
  • [[1, 112]]
  • [[6, 123]]
  • [1, 115]
  • [[2, 122], [1, 118]]
  • [[7, 162], [2, 154], [4, 150], [8, 159], [3, 134], [1, 127]]
  • [[6, 143], [1, 136]]
  • [[3, 139]]
  • [[6, 163], [5, 153]]
  • [[3, 144]]
  • [[1, 148]]
  • [[5, 161]]
  • [3, 149]
  • [[4, 156]]
  • [1, 151]
  • [[2, 158], [1, 157], [3, 154]]
  • [[7, 186], [4, 180], [2, 178], [8, 174], [3, 159]]
  • [[8, 189], [3, 179], [5, 177], [1, 160]]
  • [[6, 173], [1, 172]]
  • [1, 175]
  • [6, 183]
  • [[2, 182], [1, 178]]
  • [5, 185]
  • [1, 187], [[3, 184]]
  • [[7, 198], [6, 203], [5, 201], [1, 193], [2, 190], [4, 186]]
  • [[7, 222], [2, 214], [4, 210], [8, 204], [3, 189]]
  • [[1, 196]]
  • [[3, 199]]
  • [[8, 219]]
  • [[3, 204], [1, 199]]
  • [[1, 202]]
  • [[2, 218], [1, 217], [3, 214], [5, 209]]
  • [6, 213]
  • [[1, 220], [5, 217]]
  • [[4, 216]]
  • [[7, 246], [4, 240], [2, 238], [8, 234], [3, 219]]
  • [1, 226], [6, 223]]
  • [[5, 257], [8, 249], [3, 239], [1, 229]]
  • [[6, 233]]
  • [[1, 232]]
  • [[6, 243]]
  • [1, 235]
  • [[2, 242], [1, 238]]
  • [[7, 282], [2, 274], [4, 270], [8, 264], [3, 254], [1, 241]]
  • [[1, 247]]
  • [[6, 263], [1, 256]]
  • [[3, 259], [2, 254], [1, 250]]
  • [[6, 283], [5, 273], [1, 265]]
  • [[8, 279], [3, 264]]

Origional Verions, Mostly Works, Kindof – Antimatter Dimensions Tickspeed Challenge

  • [[5, 17], [3, 9], [1, 4]]
  • [[4, 12], [2, 6]]
  • [1, 7]
  • [[6, 23], [1, 13], [2, 10]]
  • [[3, 19], [2, 14], [1, 10]]
  • [[7, 30], [8, 39], [4, 24], [2, 18], [3, 14]]
  • [[6, 43], [5, 33], [1, 25], [2, 22], [4, 18]]
  • [[7, 42], [2, 34], [4, 30], [3, 24], [1, 19]]
  • [[1, 28], [5, 25]]
  • [[2, 26], [1, 22]]
  • [[5, 41], [6, 33]]
  • [3, 29]
  • [[4, 36], [2, 30]]
  • [1, 31]
  • [[2, 38], [1, 37], [3, 34]]
  • [[7, 66], [4, 60], [2, 58], [8, 54], [3, 39], [1, 34]]
  • [[8, 69], [3, 59], [7, 54], [5, 57], [8, 69], [3, 54], [1, 49], [2, 46], [4, 42]]
  • [[4, 48], [2, 42]]
  • [[6, 53], [1, 43]]
  • [[1, 52], [5, 49]]
  • [[2, 50], [1, 46]]
  • [1, 55]
  • [6, 63]
  • [[2, 62], [1, 58]]
  • [5, 65]
  • [1, 61]
  • [[1, 67], [3, 64]]
  • [[7, 78], [6, 83], [5, 81], [1, 73], [2, 70], [4, 66]]
  • [[7, 102], [2, 94], [4, 90], [8, 84], [3, 69], [1, 64]]
  • [[4, 72], [2, 66]]
  • [[1, 76], [6, 73]]
  • [[3, 79], [2, 74], [1, 70]]
  • [[7, 90], [8, 99], [4, 84], [2, 78], [3, 74]]
  • [[1, 85], [2, 82], [4, 78]]
  • [[3, 84], [1, 79]]
  • [[2, 86], [1, 82]]
  • [[2, 98], [1, 97], [3, 94], [5, 89]]
  • [6, 93]
  • [[1, 100], [5, 97], [3, 89]]
  • [[4, 96], [2, 90]]
  • [[7, 126], [4, 120], [2, 118], [8, 114], [3, 99], [1, 94]]
  • [[2, 110], [1, 106], [6, 103]]
  • [[5, 137], [8, 129], [3, 119], [7, 114], [5, 137], [8, 129], [3, 114], [1, 109], [2, 106], [4, 102]]
  • [[4, 108], [2, 102]]
  • [[5, 121], [6, 113], [1, 103]]
  • [[1, 112], [3, 109]]
  • [[6, 123], [5, 113]]
  • [1, 115]
  • [[2, 122], [1, 118]]
  • [[7, 162], [2, 154], [4, 150], [8, 144], [7, 150], [4, 144], [2, 138], [3, 134], [5, 129], [1, 121]]
  • [[1, 127], [3, 124]]
  • [[7, 138], [6, 143], [1, 133], [2, 130], [4, 126]]
  • [[3, 129], [1, 124]]
  • [[4, 132], [2, 126]]
  • [[1, 136], [6, 133]]
  • [[3, 139], [2, 134], [1, 130]]
  • [[6, 163], [5, 153], [1, 145], [2, 142], [4, 138]]
  • [[8, 159], [3, 144], [1, 139]]
  • [[1, 148], [5, 145]]
  • [[2, 146], [1, 142]]
  • [[5, 161], [6, 153]]
  • [3, 149]
  • [[4, 156], [2, 150]]
  • [1, 151]
  • [[2, 158], [1, 157], [3, 154]]
  • [[7, 186], [4, 180], [2, 178], [8, 174], [3, 159], [1, 154]]
  • [[8, 189], [3, 179], [7, 174], [5, 177], [8, 189], [3, 174], [1, 169], [2, 166], [4, 162]]
  • [[4, 168], [2, 162]]
  • [[6, 173], [1, 163]]
  • [[1, 172], [5, 169]]
  • [[2, 170], [1, 166]]
  • [1, 175]
  • [6, 183]
  • [[2, 182], [1, 178]]
  • [5, 185]
  • [1, 181]
  • [[1, 187], [3, 184]]
  • [[7, 198], [6, 203], [5, 201], [1, 193], [2, 190], [4, 186]]
  • [[7, 222], [2, 214], [4, 210], [8, 204], [3, 189], [1, 184]]
  • [[4, 192], [2, 186]]
  • [[1, 196], [6, 193]]
  • [[3, 199], [2, 194], [1, 190]]
  • [[7, 210], [8, 219], [4, 204], [2, 198], [3, 194]]
  • [[1, 205], [2, 202], [4, 198]]
  • [[3, 204], [1, 199]]
  • [[2, 206], [1, 202]]
  • [[2, 218], [1, 217], [3, 214], [5, 209]]
  • [6, 213]
  • [[1, 220], [5, 217], [3, 209]]
  • [[4, 216], [2, 210]]
  • [[7, 246], [4, 240], [2, 238], [8, 234], [3, 219], [1, 214]]
  • [[2, 230], [1, 226], [6, 223]]
  • [[5, 257], [8, 249], [3, 239], [7, 234], [5, 257], [8, 249], [3, 234], [1, 229], [2, 226], [4, 222]]
  • [[4, 228], [2, 222]]
  • [[5, 241], [6, 233], [1, 223]]
  • [[1, 232], [3, 229]]
  • [[6, 243], [5, 233]]
  • [1, 235]
  • [[2, 242], [1, 238]]
  • [[7, 282], [2, 274], [4, 270], [8, 264], [7, 270], [4, 264], [2, 258], [3, 254], [5, 249], [1, 241]]
  • [[1, 247], [3, 244]]
  • [[7, 258], [6, 263], [1, 253], [2, 250], [4, 246]]
  • [[3, 249], [1, 244]]
  • [[4, 252], [2, 246]]
  • [[1, 256], [6, 253]]
  • [[3, 259], [2, 254], [1, 250]]
  • [[6, 283], [5, 273], [1, 265], [2, 262], [4, 258]]
  • [[8, 279], [3, 264], [1, 259]]
  • [[1, 268], [5, 265]]
  • [[2, 266], [1, 262]]
  • [[5, 281], [6, 273]]
  • [3, 269]
  • [[4, 276], [2, 270]]
  • [1, 271]
  • [[2, 278], [1, 277], [3, 274]]
  • [[7, 306], [4, 300], [2, 298], [8, 294], [3, 279], [1, 274]]
  • [[8, 309], [3, 299], [7, 294], [5, 297], [8, 309], [3, 294], [1, 289], [2, 286], [4, 282]]
  • [[4, 288], [2, 282]]
  • [[6, 293], [1, 283]]
  • [[1, 292], [5, 289]]
  • [[2, 290], [1, 286]]
  • [1, 295]
  • [6, 303]
  • [[2, 302], [1, 298]]
  • [5, 305]
  • [1, 301]
  • [[1, 307], [3, 304]]
  • [[7, 318], [2, 310], [4, 306]]
  • [[3, 309], [1, 304]]
  • [[4, 312], [2, 306]]
  • [6, 313]
  • [5, 313]
  • [1, 310]

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button